Single source precursor driven phase selective synthesis of Au-CuGaS2 heteronanostructures: an observation of plasmon enhanced photocurrent efficiency.
نویسندگان
چکیده
The design of new functional metal-semiconductor heteronanostructures with improved photovoltaic efficiencies has drawn significant attention because of their unprecedented properties and potential applications. Herein, we report a phase selective synthesis of ternary CuGaS2 (wurtzite and tetragonal) by simple solution based thermal decomposition of a new binuclear single molecular precursor [Ga(acda)3Cu(PPh3)2]NO3 (acda = 2-aminocyclopentene-1-dithiocarboxylic acid, PPh3 = triphenylphosphine) where the phase selectivity has been achieved easily by changing the combination of surface active agents. Furthermore, we have extended our approach to develop a well-controlled synthetic strategy for the preparation of a Au-CuGaS2 heteronanocomposite with both the phases. A detailed microscopic study reveals that during heterostructure synthesis, an epitaxial junction has been formed at the interface of ternary CuGaS2 and metallic Au. To find out the influence of this epitaxial connectivity on the properties, we have studied the photocurrent and photoresponse behavior of the material and compared them with that of bare CuGaS2. For both the wurtzite and tetragonal phases, the Au-CuGaS2 twin structure exhibits a plasmon enhanced superior charge transport ability and an abruptly high photocurrent density compared to that of pure CuGaS2. Due to efficient charge separation by strong plasmon-exciton coupling at the interface, Au-CuGaS2 can be used as a potential candidate for photoelectrochemical applications.
منابع مشابه
Preparation of Au-BiVO4 heterogeneous nanostructures as highly efficient visible-light photocatalysts.
Au-BiVO(4) heterogeneous nanostructures have been successfully prepared through in situ growth of gold nanoparticles on BiVO(4) microtubes and nanosheets via a cysteine-linking strategy. The experimental results reveal that these Au-BiVO(4) heterogeneous nanostructures exhibit much higher visible-light photocatalytic activities than the individual BiVO(4) microtubes and nanosheets for both dye ...
متن کاملTransient Photocurrent Response of Plasmon-Enhanced Polymer Solar Cells with Gold Nanoparticles
In this work, the transient photocurrent of the plasmon-enhanced polymer bulk heterojunction solar cells based on poly(3-hexylthiophene) (P3HT) and [6,6]-Phenyl C61 butyric acid methyl ester (PCBM) is investigated. Two kinds of localized surface plasmon resonance (LSPR) enhanced devices were fabricated by doping the gold nanoparticles (Au NPs) into the anode buffer layer and inserting Au NPs be...
متن کاملGap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation
Plasmonic hot-electron generation has recently come into focus as a new scheme for solar energy conversion. So far, however, due to the relatively narrow bandwidth of the surface plasmon resonances and the insufficient resonant light absorption, most of plasmonic photocatalysts show narrow-band spectral responsivities and small solar energy conversion efficiencies. Here we experimentally demons...
متن کاملHydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd
Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...
متن کاملSignificant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes
Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characterist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Dalton transactions
دوره 47 4 شماره
صفحات -
تاریخ انتشار 2018